Hydraulic & Lube Oil Contamination Reference Chart

Emulsified Water: Very small droplets

dispersed in oil.

Oil viscosity may

go up and appear

cloudy and milky. Tiny amounts of

detergent engine

industrial oils.

oil can contaminate

ISO Code: 24/22/19

ISO Code: 20/17/13

ISO Code: 16/14/11

Filter Element Upgrades

Deliver lower ISO Codes, longer element life, and lower total cost of ownership

in bearing lube and hydraulic control systems

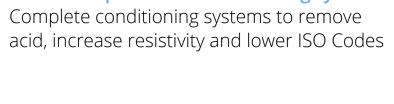
FC Off-line Filter Carts

Heavy duty off-line Filter Carts for reservoir and gearbox conditioning

Complete recovery and maintenance solution Elements designed to prevent spark discharge for mineral oil based turbine oil lubricants

VUD Vacuum Dehydration Systems Complete oil conditioning systems for removal

of particulate and all forms of water



FSL High Viscosity Filtration Systems

Oversized filter systems for off-line

gearbox and reservoir conditioning

FSAPE Phosphate Ester Conditioning Systems FCLCOD Diesel Conditioning Filter Carts Heavy duty water and particulate removal filter carts for diesel fuels

Appearance of Water in Oil

only be removed by vacuum dehydration.

500 ppm 1000 ppm 2500 ppm 5000 ppm 10000 ppm

Harmful Effects of Water in Oil

Water is one of the most common and most damaging contaminants found in a lube or hydraulic system. Continuous or periodic high water levels can result in damage such as:

- Metal Etching (Corrosion)
- Abrasive Wear in Hydraulic Components
- Dielectric Strength Loss
- Fluid Breakdown
- Additive Precipitation and Oil Oxidation
- Reduction in Lubricating Properties

Contamination Related Failure

DFE Rated Filter Elements Lower ISO

Codes and Improve Reliability

Component Life Extension by Removing Water*

_		1000 (0.1	%)	500 (0.05	%)	250 (0.02	(5%)	100 (0.01	%)	50 (0.005	%)
el PPN		Rolling Element	Journal Bearing								
Lev	5000	2.3	1.6	3.3	1.9	4.8	2.3	7.8	2.9	11.2	3.5
ure	2500	1.6	1.3	2.3	1.6	3.3	1.9	5.4	2.4	7.8	2.9
oist	1000	-	-	1.4	1.2	2	1.5	3.3	1.9	4.8	2.3
Σ	500	-	-	-	-	1.4	1.2	2.3	1.6	3.3	1.9
rent	250	-	-	-	-	-	-	1.5	1.3	2.3	1.6
Curi	100	-	-	-	-	-	-	-	-	1.4	1.2
				9	-01			Jm		*Courte	sy of Noria

Before

ISO Code Limits

Recommended* Upper Limit ISO Cleanliness Codes per Component by Pressure Rating

	Pressure <2000 psi (138 bar)		Pressure 2000-3000 psi (138-207 bar)		Pressure >3000 psi (207 bar)	
	Industry Standard	Hy-Pro Recommended	Industry Standard	Hy-Pro Recommended	Industry Standard	Hy-Pro Recommende
Pumps						
Fixed gear	20/18/15	≤ 17/15/12	19/17/15	≤ 16/14/11	-	-
Fixed piston	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	17/15/12	≤ 15/13/10
Fixed vane	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Variable piston	18/16/13	≤ 16/14/11	17/15/13	≤ 15/13/10	16/14/12	≤ 15/13/10
Variable vane	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10	-	-

Valves						
Cartridge	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10
Check valve	20/18/15	≤ 17/15/12	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11
Directional (solenoid)	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Flow control	19/17/14	≤ 17/15/12	18/16/13	≤ 16/14/11	18/16/13	≤ 16/14/11
Pressure control	19/17/14	≤ 17/15/12	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10
(modulating)						
Proportional	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
cartridge valve						
Proportional directional	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional flow control	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
pressure control						
Servo valve	16/14/11	≤ 14/12/9	16/14/11	≤ 14/12/9	15/13/10	≤ 13/11/8

Bearings						
Ball bearing	15/13/10	≤ 15/13/10	-	-	-	-
Gearbox (industrial)	17/16/13	≤ 15/13/10	-	-	-	-
Journal bearing	17/15/12	≤ 15/13/10	-	-	-	-
(high speed)						
Journal bearing	17/15/12	≤ 15/13/10	-	-	-	-
(low speed)						
Roller bearing	16/14/11	≤ 15/13/10	-	-	-	-

Actuators						
Cylinders	17/15/12	≤ 16/14/11	16/14/11	≤ 15/13/10	15/13/10	≤ 15/13/10
Vane motors	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Axial piston motors	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	17/15/12	≤ 15/13/10
Gear motors	20/18/14	≤ 17/15/12	19/17/13	≤ 16/14/11	18/16/13	≤ 15/13/10
Radial piston motors	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10

Test stands	15/13/10	≤ 15/13/10	15/13/10	≤ 15/13/10	15/13/10	≤ 15/13/10
Hydrostatic	17/15/13	≤ 16/14/11	16/14/11	≤ 15/13/10	16/14/11	≤ 15/13/10
transmissions						
High pressure	18/16/13	≤ 16/14/11	18/16/13	≤ 15/13/10	18/16/13	≤ 15/13/10
fuel injector or						
common fuel rail						

*Depending upon system volume and severity of operating conditions a combination of filters with varying degrees of filtration efficiency might be required (I.e. pressure, return, and off-line filters) to achieve and maintain the desired fluid cleanliness.

Understanding ISO Codes Fluid Analysis Reference Guide

Below are contaminants found on fluid analysis test reports listed according to their chemical symbol (often how they'll be listed on the reports) and the various sources from which they are known to occur.

Oil Analysis Patch Test Kits

Lowering Your ISO Codes: Oil Analyses Filter Patches

your system cleanliness. Establish your current ISO code, set a target

and a plan of action, and finally trend your progress to your goal.

Understanding the condition of your fluid is the first step toward improving

The ISO Cleanliness Code (per ISO4406-1999) is used to quantify particulate contamination levels per milliliter of fluid at 3 sizes - $4\mu_{rcl}$, $6\mu_{rcl}$, and $14\mu_{rcl}$. It is expressed in 3 numbers (example 19/17/14) where each number represents a contaminant level code for the correlating particle size. The code includes all particles of the specified size and larger.

It is important to note that each time a code increases, the quantity range of particles is doubling. Inversely, as a code decreases by one the contaminant level is cut in half.

ISO 4406:1999 Code Chart

	Dartislas nas Mi	IIIII+or (DDM)		Campala Values	Defere Filtre	ation	
SO Code	Particles per Mi Lower Limit	Upper Limit		Sample Values Particle Size	PPM	ISO 4406 Code Range	ISO Code
4	80,000	160,000		4μ _[C]	151773	80,000-160,000	24
.3	40,000	80,000		4.6µ _[C]	87210		
2	20,000	40,000		6μ _[C]	38363	20,000-40,000	22
.1	10,000	20,000		10μ _[C]	8229		
.0	5,000	10,000	_	14µ _[C]	3339	2,500-5,000	19
9	2,500	5,000		21µ _[C]	1048		
8	1,300	2,500		38µ _[C]	112		
7	640	1,300		68µ _[C]	2		
6	320	640	_				
0	320	040					
5	160	320	_	Sample Values	After Filtrat	on	
			_	Sample Values Particle Size	After Filtrati	on ISO 4406 Code Range	ISO Code
5	160	320		Particle Size			ISO Code
5	160 80	320 160		Particle Size	PPM	ISO 4406 Code Range	
5 4 3	160 80 40	320 160 80	_ _ 	Particle Size $4\mu_{[c]}$ $4.6\mu_{[c]}$	PPM 69	ISO 4406 Code Range	
5 4 3 2	160 80 40 20	320 160 80 40		Particle Size $4\mu_{[c]}$ $4.6\mu_{[c]}$ $6\mu_{[c]}$	PPM 69 35	ISO 4406 Code Range 40-80	13
5 4 3 2 1	160 80 40 20 10	320 160 80 40 20		Particle Size $4\mu_{[c]}$ $4.6\mu_{[c]}$ $6\mu_{[c]}$ $10\mu_{[c]}$	PPM 69 35 7	ISO 4406 Code Range 40-80	13
5 4 3 2 1	160 80 40 20 10 5	320 160 80 40 20		Particle Size $4\mu_{[c]}$ $4.6\mu_{[c]}$ $6\mu_{[c]}$ $10\mu_{[c]}$ $14\mu_{[c]}$	PPM 69 35 7 5	ISO 4406 Code Range 40-80 5-10	13
5 4 3 2 1	160 80 40 20 10 5 2.5	320 160 80 40 20 10 5		Particle Size $4\mu_{[c]}$ $4.6\mu_{[c]}$ $6\mu_{[c]}$ $10\mu_{[c]}$	PPM 69 35 7 5	ISO 4406 Code Range 40-80 5-10	13

Component Life Extension Tables

Develop a Fluid Cleanliness Target

Hy-Pro will help you develop a plan to achieve and maintain target fluid cleanliness. Arm yourself with the support, training, tools and practices to operate more efficiently, maximize uptime and save money.

Laboratory and field tests prove time and again that Hy-Pro filters consistently deliver lower ISO fluid cleanliness codes.

Improving fluid cleanliness means reduced downtime, more reliable equipment, longer fluid life, fewer maintenance hours, and reduces costly

component replacement or repair expenses.

Hydraulic Component Life Extension

Current ISO Code	New ISO Code	New ISO Code	New ISO Code	New ISO Code
	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/23/21	25/22/19	23/21/18	22/20/17
27/25/22	25/23/19	23/21/18	22/20/17	21/19/16
26/24/21	23/21/18	22/20/17	21/19/16	21/19/15
25/23/20	22/20/17	21/19/16	20/18/15	19/17/14
24/22/19	21/19/16	20/18/15	19/17/14	18/16/13
23/21/18	20/18/15	19/17/14	18/16/13	17/15/12
22/20/17	19/17/14	18/16/13	17/15/12	16/14/11
21/19/16	18/16/13	17/15/12	16/14/11	15/13/10
20/18/15	17/15/12	16/14/11	15/13/10	14/12/9
19/17/14	16/14/11	15/13/10	14/12/9	13/11/8
18/16/13	15/13/10	14/12/9	13/11/8	_
17/15/12	14/12/9	13/11/8	-	_
16/14/11	13/11/8	_	_	_
15/13/10	13/11/8	_	_	_
14/12/9	13/11/8	_	_	_

rydradiic	Component	LITE LACCION	1 1		
Current SO Code	New ISO Code	New ISO Code	New ISO Code	New ISO Code	
	2 x Life	3 x Life	4 x Life	5 x Life	
8/26/23	25/23/21	25/22/19	23/21/18	22/20/17	
7/25/22	25/23/19	23/21/18	22/20/17	21/19/16	
6/24/21	23/21/18	22/20/17	21/19/16	21/19/15	
5/23/20	22/20/17	21/19/16	20/18/15	19/17/14	
4/22/19	21/19/16	20/18/15	19/17/14	18/16/13	
3/21/18	20/18/15	19/17/14	18/16/13	17/15/12	
2/20/17	19/17/14	18/16/13	17/15/12	16/14/11	
1/19/16	18/16/13	17/15/12	16/14/11	15/13/10	
0/18/15	17/15/12	16/14/11	15/13/10	14/12/9	
9/17/14	16/14/11	15/13/10	14/12/9	13/11/8	
8/16/13	15/13/10	14/12/9	13/11/8	_	
7/15/12	14/12/9	13/11/8	_	_	
6/14/11	13/11/8	_	_	_	
5/13/10	13/11/8	_	_	_	
4/12/9	13/11/8	_	_	_	

Roller Contact Bearing Life Extension

Other

Current ISO Code	New ISO Code	New ISO Code	New ISO Code	New ISO Code
	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/23/19	22/20/17	20/18/15	19/17/14
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13
26/24/21	22/20/17	20/18/15	18/16/13	17/15/12
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11
24/22/19	20/18/15	18/16/13	16/14/11	15/13/10
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9
22/20/17	18/16/13	16/14/11	14/12/9	13/11/8
21/19/16	17/15/12	15/13/10	13/11/8	_
20/18/15	16/14/11	14/12/9	_	_
19/17/14	15/13/10	13/11/8	_	_
18/16/13	14/12/9	_	_	_
17/15/12	13/11/8	_	_	_
16/14/11	13/11/8	_	_	_
15/13/10	13/11/8	_	-	_
14/12/9	13/11/8	_	_	_

hyprofiltration.com/