

Oil Cleanliness & Contamination Reference POCKET GUIDE

ANDERSON, INDIANA

Table of Contents

4	Particle Contamination
6	Particle Sizes
8	Understanding ISO Codes
9	Fluid Cleanliness Code Comparisons
10	ISO Code Limits
14	Bearing & Component Life Extension
16	Fluid Analysis Reference Guide
22	Oil Sampling Procedure
24	Identifying Types of Contamination
25	Examples of Contamination
32	Water Removal
33	Types of Water Contamination
34	Upgrading from Cellulose to Glass
39	Contamination Calculator Mobile App

Introduction

Contamination Prevention

Our mission is to make our customers as efficient as possible, and we achieve that with the highest quality filtration products and total system cleanliness strategies to maximize uptime, productivity and prevent costly fluid contamination-related failures.

With a Hy-Pro dedicated filtration system, fluid contamination related failures and premature fluid replacement are a thing of the past. Every off-line solution includes sample ports before and after filters, providing accurate reservoir condition and filter performance validation. As with all Hy-Pro systems, your off-line system can be completely customized to provide the best solution for your application.

Particle Contamination

Internally Generated Contamination - Bearing Fatigue Wear

'Clearance Size Particles' generated from contaminated fluid film between adjacent surfaces (one or both surfaces moving) become work-hardened (Fig. 1). Abrasive wear also causes leakage, dimensional changes, and efficiency loss. The most common result of a decrease in efficiency is an increase in heat. These 'Clearance Size Particles' under load damage (fatigue) the outer surface, causing a crack to form (Fig. 2).

Once the crack spreads (Fig. 3), small contaminants break away from the damaged surface that originated from fatigue wear leaving a pit and also releasing particles that will lead to more abrasive wear (Fig. 4).

Particle Contamination

Figure 3

Damage to the outer surface spreads, causing more stress to the crack.

Figure 4

Small contaminantes break away leaving a pit and releasing more abrasive wear.

Servo Valves, Piston Pumps and Gear Pumps

Internally generated contamination can also occur in servo valves, piston pumps, and gear pumps.

Erosive wear in servo valves can cause valve spool movement problems. Soft contamination, such as varnish, can cause these movement problems, resulting in actuator damage or valve damage. Regardless, the control has been lost.

In piston pumps, contamination enters the fluid film then particles are generated by abrasion between the piston show and swash plate.

For gear pumps, changes in pressure cause the gears to come into contact with the housing. This is the main reason that gear pumps should be tested at the operating pressure that they will experience predominately in the system.

Particle Sizes

The Micrometer

Particle sizes are measured in "micrometers" (one millionth of a meter). The chart below is meant to put particle sizes into perspective. Hy-Pro manufactures elements every day that can filter contamination the size of white as well as red blood cells out of your body. This includes particles as small as bacteria.

Particle Sizes

1 micron = 0.000039" = 1 micrometer

Understanding ISO Codes

The ISO Cleanliness Code (per ISO4406-1999) is used to quantify particulate contamination levels per milliliter of fluid at 3 sizes - $4\mu_{[C]}$ ($4\mu_{[C]}$ and $14\mu_{[C]}$. It is expressed in three numbers (example 19/17/14) where each number represents a contaminant level code for the correlating particle size. The code includes all particles of the specified size and larger.

It is important to note that each time a code increases, the quantity range of particles is doubling. Inversely, as a code decreases by one, the contaminant level is cut in half.

ISO 4406:1999 Code Chart

ISO Code	Lower Limit	Upper Lin	nit	P S
24	80,000	160,000	-	4
23	40,000	80,000		4
22	20,000	40,000	-	6
21	10,000	20,000		1
20	5,000	10,000		1
19	2,500	5,000		2
18	1,300	2,500		3
17	640	1,300		6
16	320	640		c
15	160	320		Э Р
14	80	160		S
13	40	80	-	4
12	20	40		4
11	10	20	_►	6
10	5	10		1
9	2.5	5	_►	1
8	1.3	2.5		2
7	0.64	1.3		3
6	0.32	0.64		6
				_

Particles per Milliliter (PPM) Sample Values Before Filtration

Particle Size	PPM	ISO 4406 Code Range	ISO Code
4µ _[C]	151773	80,000-160,000	24
4.6µ _[C]	87210		
6μ _[C]	38363	20,000-40,000	22
10µ _[C]	8229		
14µ _[C]	3339	2,500-5,000	19
21µ _[C]	1048		
38µ _[C]	112		
68µ _[C]	2		

Sample Values After Filtration

Particle Size	PPM	ISO 4406 Code Range	ISO Code
4µ _[C]	69	40-80	13
4.6µ _[C]	35		
6μ _[C]	7	5-10	10
10µ _[C]	5		
14µ _[C]	0.4	0.32-0.64	6
21µ _[C]	0.1		
38µ _[C]	0.0		
68µ _[C]	0.0		

Fluid Cleanliness Code Comparisons

ISO/DIS 4406	NAS		SAE	Defence Standard 05/42	
BS 5540/4 Codes	163	38	749	Table A	Table B
25/23/17				100,000	
24/22/15				21,000	
23/21/18	12				
23/21/14				15,000	
22/20/17	11				
22/20/13				6,300	
21/19/16	10				
21/19/13				4,400	6,300F
20/18/15	9	6			
20/18/13					4,400F
20/18/12				2,000	
19/17/14	8	5			
19/17/11				1,300	2,000F
18/16/13	7				
18/16/11					1,300F
18/16/10				800	
17/15/12	6	3			
17/15/10					800F
17/15/09				400	
16/14/11	5	2			
16/14/09					400F
15/13/10	4	1			
14/12/09	3	0			
13/11/08	2				

ISO Code Limits

Hydraulic component and bearing manufacturers set ISO fluid cleanliness code limits that are the maximum tolerance for fluid contamination under which predictable performance and life can be maintained. These limits often become fluid cleanliness targets at the mill or plant level. Using the upper limit as a target means that you are operating on the absolute edge with no room for error. But there is a better way.

We want to make our customers as efficient as possible. To do this we recommend and help implement operating ISO Codes that are well below OEM upper limits. Our focus is not to hit a valve manufacturer's ISO Code limit but to help our customer reduce servo valve replacements from 220 in one year to six in the next by implementing lower operating ISO Codes and drastically reducing component wear/failure. And since that customer could prove that their oil was cleaner than required by spec, those six servos in year two were replaced under warranty by the manufacturer. Lower operating ISO Codes can extend component life by triple, quadruple and beyond, resulting in huge reliability, profitability and efficiency gains.

ISO Code Limits

How clean is my fluid?

Identifying proper sampling ports and locations, taking accurate samples and correctly interpreting results are critical to success. That's why our training and support are based on knowing and understanding the importance of fluid cleanliness and sampling. Hy-Pro is on the front line with on-line particle counters, expertise and strategies to achieve lower operating ISO Codes.

Setting Operating ISO Codes

The table on the following page represents Hy-Pro's recommendations for operating ISO Code by component and pressure. These are lower than typical industry standard target ISO Codes and are based on our experience of extending component life and reliability. Other considerations in setting lower operating ISO Codes include:

- · Component criticality (turbine hydraulic controls)
- · Safety (amusement park hydraulics)
- · Excessive shock or vibration (mining excavator)
- High frequency duty cycle (high-speed stamping press)

Total System Cleanliness

Upgrading to Hy-Pro DFE rated filter elements, Hy-Dry breathers and adding off-line contamination solutions where needed are a small expense compared to the cost of contamination-related component repair and replacement, premature fluid replacement, increased maintenance demands and, worst of all, downtime. By taking these small steps and becoming proactive in preventing contamination, you're setting yourself and your plant up with the best possible chance for success.

Recommended^{*} Upper Limit ISO Cleanliness Codes per Component by Pressure Rating

	Pressure <2000 psi (138 bar)		
	Industry Standard	d Hy-Pro	
		Recommended	
Pumps			
Fixed gear	20/18/15	≤ 17/15/12	
Fixed piston	19/17/14	≤ 16/14/11	
Fixed vane	20/18/15	≤ 17/15/12	
Variable piston	18/16/13	≤ 16/14/11	
Variable vane	18/16/13	≤ 16/14/11	
Valves			
Cartridge	18/16/13	≤ 16/14/11	
Check valve	20/18/15	≤ 17/15/12	
Directional (solenoid)	20/18/15	≤ 17/15/12	
Flow control	19/17/14	≤ 17/15/12	
Pressure control (modulating)	19/17/14	≤ 17/15/12	
Proportional cartridge valve	17/15/12	≤ 15/13/10	
Proportional directional	17/15/12	≤ 15/13/10	
Proportional flow control	17/15/12	≤ 15/13/10	
Proportional pressure control	17/15/12	≤ 15/13/10	
Servo valve	16/14/11	≤ 14/12/9	
Bearings			
Ball bearing	15/13/10	≤ 15/13/10	
Gearbox (industrial)	17/16/13	≤ 15/13/10	
Journal bearing (high speed)	17/15/12	≤ 15/13/10	
Journal bearing (low speed)	17/15/12	≤ 15/13/10	
Roller bearing	16/14/11	≤ 15/13/10	
Actuators			
Cylinders	17/15/12	≤ 16/14/11	
Vane motors	20/18/15	≤ 17/15/12	
Axial piston motors	19/17/14	≤ 16/14/11	
Gear motors	20/18/14	≤ 17/15/12	
Radial piston motors	20/18/15	≤ 17/15/12	
Other			
Test stands	15/13/10	≤ 15/13/10	
Hydrostatic transmissions	17/15/13	≤ 16/14/11	
High pressure fuel injector	18/16/13	≤ 16/14/11	

*Depending upon system volume and severity of operating conditions a combination of filters with varying degrees of filtration efficiency might be required (I.e. pressure, return, and off-line filters) to achieve and maintain the desired fluid cleanliness.

Pressure 2000-3000 psi (138-207 bar)		Pressure >3000 psi (207 bar)		
Industry Standard	Hy-Pro Recommended	Industry Standard	Hy-Pro	
			Recommended	
Pumps				
19/17/15	≤ 16/14/11	-	-	
18/16/13	≤ 15/13/10	17/15/12	≤ 15/13/10	
19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	
17/15/13	≤ 15/13/10	16/14/12	≤ 15/13/10	
17/15/12	≤ 15/13/10	-	-	
Valves				
17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	
20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	
19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	
18/16/13	≤ 16/14/11	18/16/13	≤ 16/14/11	
18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10	
17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9	
17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9	
17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9	
17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9	
16/14/11	≤ 14/12/9	15/13/10	≤ 13/11/8	
Bearings				
-	-	-	-	
-	-	-	-	
-	-	-	-	
-	-	-	-	
-	-	-	-	
Actuators				
16/14/11	≤ 15/13/10	15/13/10	≤ 15/13/10	
19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	
18/16/13	≤ 15/13/10	17/15/12	≤ 15/13/10	
19/17/13	≤ 16/14/11	18/16/13	≤ 15/13/10	
19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	
Other				
15/13/10	≤ 15/13/10	15/13/10	≤ 15/13/10	
16/14/11	≤ 15/13/10	16/14/11	≤ 15/13/10	
18/16/13	≤ 15/13/10	18/16/13	≤ 15/13/10	

Bearing & Component Life Extension

Improving fluid cleanliness means reduced downtime, more reliable equipment, longer fluid life, and fewer maintenance hours. In addition, it also means reduced component replacement and repair expenses.

By improving the cleanliness of your fluid by only a few ISO Codes, you can directly increase the lifespan of your components and equipment. The tables on the following page demonstrate the life extension for both roller contact bearings and hydraulic components given a reduction in ISO Codes.

How clean is your new oil?

As it turns out, new oil can be one of the worst sources of particulate and water contamination.

The picture on the left was taken from a patch test at 10x magnification on a new oil sample direct from the manufacturer and shows the level of contamination present in seemingly clean oil.

A good upper limit for new oil cleanliness is 16/14/11. However, a commonly seen ISO Code for new oil reaches an ISO Code of 25/22/19, which is not only unsuitable for hydraulic or lubrication systems but can

actually be a major cause of degradation and premature component failure.

Hy-Pro will help you develop a plan to achieve and maintain target fluid cleanliness. Arm yourself with the support, training, tools and practices to operate more efficiently, maximize uptime and save money.

Hydraulic Component Life Extension

Current ISO Code	New ISO Code					
	2 x Life	3 x Life	4 x Life	5 x Life		
28/26/23	25/23/21	25/22/19	23/21/18	22/20/17		
27/25/22	25/23/19	23/21/18	22/20/17	21/19/16		
26/24/21	23/21/18	22/20/17	21/19/16	21/19/15		
25/23/20	22/20/17	21/19/16	20/18/15	19/17/14		
24/22/19	21/19/16	20/18/15t	19/17/14	18/16/13		
23/21/18	20/18/15	19/17/14	18/16/13	17/15/12		
22/20/17	19/17/14	18/16/13	17/15/12	16/14/11		
21/19/16	18/16/13	17/15/12	16/14/11	15/13/10		
20/18/15	17/15/12	16/14/11	15/13/10	14/12/9		
19/17/14	16/14/11	15/13/10	14/12/9	13/11/8		
18/16/13	15/13/10	14/12/9	13/11/8	-		
17/15/12	14/12/9	13/11/8	-	-		
16/14/11	13/11/8	-	-	-		
15/13/10	13/11/8	-	-	-		
14/12/9	13/11/8	-	-	-		

Roller Contact Bearing Life Extension

Current ISO Code

New ISO Code

	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/23/19	22/20/17	20/18/15	19/17/14
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13
26/24/21	22/20/17	20/18/15	18/16/13	17/15/12
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11
24/22/19	20/18/15	18/16/13	16/14/11	15/13/10
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9
22/20/17	18/16/13	16/14/11	14/12/9	13/11/8
21/19/16	17/15/12	15/13/10	13/11/8	-
20/18/15	16/14/11	14/12/9	-	-
19/17/14	15/13/10	13/11/8	_	_
18/16/13	14/12/9	-	-	-
17/15/12	13/11/8	-	-	-
16/14/11	13/11/8	-	-	-
15/13/10	13/11/8	-	-	-
14/12/9	13/11/8	-	-	-

The table below and on the next page outline the viscosity measurements per ISO 3448 along with common minimum and optimum viscosities for various systems you'll likely find operating in your facility.

Viscosity Range	ISO 3448 Viscosity Class	Kinematic Viscosity Mid- point cSt @ 40°C	Kinematic Viscosity Minimum cSt @ 40°C	Kinematic Viscosity Maximum cSt @ 40°C
	ISO VG 32	32	28.8	35.2
	ISO VG 46	46	41.4	50.6
	ISO VG 68	68	61.2	74.8
	ISO VG 100	100	90	110
	ISO VG 150	150	135	165
	ISO VG 220	220	198	242
	ISO VG 320	320	288	352
	ISO VG 460	460	414	506
	ISO VG 680	680	612	748

Industrial Oil Viscosities - ISO 3448

ISO 3448 establishes common viscosity classifications for industrial lubricants that are widely accepted and used across the globe. Each of your oils fall under a specific category of ISO VG classification, which you can obtain from the manufacturer and are often listed on test reports you will receive from fluid sample analyses.

On the following pages are contaminants found on fluid analysis test reports listed according to their chemical symbol (often how they'll be listed on the reports) and the various sources from which they are known to occur.

Minimum	Application	Viscosity cSt @ 40°C
Viscosities	Gearbox Reducers	33
	Gear Pumps	30
	Spherical Roller Bearings	21
	Other Roller Bearings	13
	Hydraulic Systems	13
	Plain Bearings	13
	To Support Dynamic Load	4
Optimum	Application	Viscosity cSt @ 40°C
Viscosities (at Operating Temp)	Hydraulic Systems	25
	Plain Bearings	30
	Spur & Helical Gears	40
	Hypoid Gears	60

75

Worm Gears

Oil Ar	alysis T	est Cat	egories		
Xx Name	Wear Metals	Xx Name	Additives	Xx Name	Contaminants
A I	E	Bearings		Al	umina
AI	E	Blocks		Ba	auxite
Aluminum	E	Blowers		Ca	atalyst
	E	Bushings		Co	bal
	(lutches		Fl	y Ash
	(Cylinders		Fc	oundry Dust
	F	lousings		G	ranite
	F	Pistons		G	rease Thickener
	F	Pump Bear	ings	Pa	aint
	N	Notor Hou	sings	Ro	oad Dust
	F	Rotors			
	T	hrust Bea	rings		
	T	Thrust Was	hers		
	A	Alloy Steel		Ce	eramic Products
Sb				Pa	aint
Antimony					
De	F	uel Additiv	/e	0	il Additive: Detergent
Ва	(Grease Thio	ckener		
Barium					
Po	A	Alloy Steel			
De					
Beryllium		Colont Ink	vibitor		il Additivo: Ext Brossura
R		Luuiant inr Dil Additive	Monti Wear		il Additive: EXT Pressure
			. And Wear		in Additive. Detergent
Boron		ournal Bea	arings		
Cd	F	Plating			
Cadmium		. 0			

Predictor	Predictor Source of Spectrometry Metals								
Wear Metals Contaminants & Abrasives									
Ca	Cement Dust	Hard Rock Dust							
La	Fuller's Earth	Oil Additive: Detergent							
Calcium	Grease Thickener	Oil Additive: Rust Inhibitor							
	Gypsum	Road Dust							
	Hard Water	Rubber							
	Lignite	Salt Water							
		Slag							
-	Exhaust Valves	Roller Bearings							
Cr	Sleeve Liners	Stainless Steel							
Chromium	Low Alloy Steel	Taper Bearings							
	Oil Coolers								
	Rings	Water Treatment							
	Rods	Paint							
	Babbitt Bearings (Underlay)	Oil Pumps							
Cu	Bearing Cage	Pump Piston & Thrust Plate							
Copper	Brass	Steering Disc							
	Bronze	Valve Train Bushings							
	Cam Bushings	Wear Plates							
	Clutches	Wrist Pin Bushings							
	Governors								
	Guides	Oil Additive: Anti Wear							
	Oil Coolers	Paint							
-	Bearings	Hydraulic Pump							
Fe	Blocks	Vanes							
Iron	Brake Pads	Gears							
	Cam Shaft	Pistons							
	Cast Iron	Liners							
	Cast Iron Crankshafts	Liners Oil Pump							

Oil An	alysis Te	est Cat	egories		
XX Name	Wear Metals	Xx Name	Additives	Xx Name	Contaminants
Fe	Dis Ge Ho	scs ears ousings		R S S	ings crews hafts
Pb	Ba Jou Br So Ba	bbitt urnal Bea onze Allo lder llancing V	aring (Overlay) by Veights	F	Gasoline Additives Paint Road Dust
Magnesium	Tu	rbine Me	etallurgy	H C F S F	Hard Water Dil Additive: Detergent Road Dust Gea Water Guller's Earth
	All Rir	oy Steel ng			Dil Additive: Ext Pressure Grease
Nicke	Ha Sta Pla	ardened S ainless St ating	Steel ceel		
Phosphorous	Oi Oi	l Additive l Additive	e: Anti Wear e: Ext Pressure		
K Potassium	Co Fly Fu	olant Inh Ash el Eleme	nibitor nt	F	Granite Paper Dust Road Dust

Predictor Source of Spectrometry Metals								
Wear Metals Contaminants & Abrasives								
Ci	Alloy Steel	Granite						
31	Asbastas	Grease						
Silicon	Compant Dust	Oil Additive: Antifoam						
	Fly Ash	Synthetic Lubricant						
	Road Dust	Sealant						
	Glass							
A	Bearing (Overlay)	Oil Cooler (Solder)						
Ag	Needle Bearings	Wrist Pin Bushings						
Silver								
	Activated Alumina	Grease						
Na	Coolant Inhibitor	Oil Additives						
Sodium	Dirt	Paper Mill Dust						
	Fly Ash	Road Salt						
C	Bearing Cage	Piston Overlay						
Sn	Babbitt	Solder						
Tin	Bearing Flashing							
	Gas Turbine Bearings	Paint						
	Turbine Blades							
Titanium								
1/	Turbine Blades	Bunker Oil						
V	Valves							
Vanadium								
-	Brass	Cathodic Protection						
Zn	Plating	Galvanizing						
Zinc		Grease						
		Oil Additive: Anti Wear						

Oil Sampling Procedure

Upstream vs. Downstream Sample Ports

Locate a sample port upstream of the pressure filter so reservoir or barrel contamination levels can be analyzed to determine if system is operating under its limit or if top off oil is clean enough to be added to the system.

An upstream sample port provides reservoir information, while a downstream sample port provides filter element performance information and will confirm if a bypass valve is leaking. For system trend analysis, an upstream sample port is preferred.

22

Steps for Acquiring a Proper Oil Sample

1.	Place a bucket below the sampling valve. (Use an assistant to help in this process. If no assistant is available, drill a hole slightly smaller than the size of the tube in the top of the bucket and stick the tube into it at a downward angle.)
2.	Open/shut sample valve several times to dislodge any contaminants from internal surfaces.
3.	Create an acceptable flow rate through the sample valve line into the bucket. (Not fast enough to splash, but enough to continue flushing the line. Maintain oil flow through entire sample procedure.)
4.	Fill bottle 1/4 to 1/3 Full. (While filling, hold the cap facing downward. Do not hold cap in mouth or breath onto surface, as this can add up to 200 ppm water content to sample, invalidating results.)
5.	Recap the bottle.
6.	Agitate vigorously.
7.	Dump oil back into bucket. (Make sure not to splash in order to avoid contamination potential.)
8.	Repeat steps 4-7 two additional times for three rounds of agitation to remove contaminants from bottle and cap.
9.	Fill sample bottle up to the neck/sample line.
10.	Cap the bottle.
11.	Shut off flow from the sample valve and discard oil collected in bucket according to your company's policies.

After all steps for acquiring a proper oil sample have been completed, all four components (hose, valve, bottle and cap) have been flushed and trend data is now accurate for solid particle contamination.

Identifying Types of Contamination

Particle Size	Particles per ml	ISO 4406 Code Range			
4µm _[C]	492	320~640			
6µm _[C]	149	80~160			
14µm _[C]	15	10~20			

 ${\rm X}\mu{\rm M}_{\rm [c]}$ denotes particle counter calibration per ISO 11171 using NIST traceable contaminant.

Scope scale division (mm): 1 = $10\mu m_{[C]}$ Scope scale division (IN): 1 = $14\mu m_{[C]}$ Slide Magnification: 100x Fluid Volume: 25ml

ISO Code: 16/14/11

Photo Analysis:

Fine metallic and oxidized metallic particles.

Particle Size	Particles per ml	ISO 4406 Code Range
4µm _[c]	3169	2500~5000
6μm _[c]	1283	640~1300
14µm _(c)	109	80~160

 ${\rm X}\mu{\rm m}_{\rm ICI}$ denotes particle counter calibration per ISO 11171 using NIST traceable contaminant.

Scope scale division (mm): $1 = 10 \mu m_{CI}$ Scope scale division (IN): $1 = 14 \mu m_{CI}$ Slide Magnification: 100x Fluid Volume: 25ml

ISO Code: 19/17/14

Photo Analysis:

Silica, metallic and some rust particles.

Particle Size	Particles per ml	ISO 4406 Code Range			
4µm _[C]	6361	5000~10000			
6μm _[c]	1200	640~1300			
14µm _[c]	79	40~80			

 $X\mu m_{\rm cl}$ denotes particle counter calibration per ISO 11171 using NIST traceable contaminant.

Scope scale division (mm): 1 = $10\mu m_{[C]}$ Scope scale division (IN): 1 = $14\mu m_{[C]}$ Slide Magnification: 100x Fluid Volume: 25ml

ISO Code: 20/17/13

Photo Analysis:

Silica and some metallic particles.

Particle Size	Particles per ml	ISO 4406 Code Range			
4µm _[C]	14358	10000~20000			
6μm _[c]	3110	2500~5000			
14µm _[C]	596	320~640			

 $X\mu m_{\rm [c]}$ denotes particle counter calibration per ISO 11171 using NIST traceable contaminant.

Scope scale division (mm): $1 = 10\mu m_{[C]}$ Scope scale division (IN): $1 = 14\mu m_{[C]}$ Slide Magnification: 100x Fluid Volume: 25ml

ISO Code: 21/19/16

Photo Analysis:

Silica, metallic and some rust particles.

Particle Size	Particles per ml	ISO 4406 Code Range
4µm _(c)	151773	80000~160000
6μm _{լc]}	3863	20000~40000
14µm _[c]	3339	2500~5000

 $\rm X\mu m_{[c]}$ denotes particle counter calibration per ISO 11171 using NIST traceable contaminant.

Scope scale division (mm): $1 = 10\mu m_{[C]}$ Scope scale division (IN): $1 = 14\mu m_{[C]}$ Slide Magnification: 100x Fluid Volume: 25ml

ISO Code: 24/22/19

Photo Analysis:

Silica, rust, gel, metallic particles, and fibers.

Particle Size	Particles per ml	ISO 4406 Code Range
4µm _[C]	286480	160000~320000
6μm _[c]	100541	80000~160000
14µm _(c)	615	320~640

 $\rm X\mu m_{[c]}$ denotes particle counter calibration per ISO 11171 using NIST traceable contaminant.

Scope scale division (mm): $1 = 10\mu m_{[C]}$ Scope scale division (IN): $1 = 14\mu m_{[C]}$ Slide Magnification: 100x Fluid Volume: 25ml

ISO Code: 25/24/16

Photo Analysis:

Oxidized metal particles with a high concentration of fine contaminant.

Particle Size	Particles per ml	ISO 4406 Code Range
4µm _[c]	314475	160000~320000
6μm _[c]	266087	160000~320000
14µm _[C]	39129	20000~40000

 $\rm X\mu m_{[c]}$ denotes particle counter calibration per ISO 11171 using NIST traceable contaminant.

Scope scale division (mm): $1 = 10\mu m_{[C]}$ Scope scale division (IN): $1 = 14\mu m_{[C]}$ Slide Magnification: 100x Fluid Volume: 25ml

ISO Code: 25/25/22

Photo Analysis:

Silica, metallic and some rust particles.

Water Removal

Remove Water: Protect Your System

Emulsified water, very small droplets of water dispersed through oil, will often cause oil to appear cloudy or milky along with increasing its viscosity. Hy-Pro Water Removal filter elements pull free and emulsified water from your industrial oils to leave them clean and dry and ensure your system is operating at its peak efficiency.

Harmful Effects of Water in Oil

Water is one of the most common and most damaging contaminants found in a lube or hydraulic system. Continuous or periodic high water levels can result in damage such as:

- · Metal Etching (Corrosion)
- Abrasive Wear in Hydraulic Components
- Dielectric Strength Loss
- Fluid Breakdown
- · Additive Precipitation and Oil Oxidation
- · Reduction in Lubricating Properties

Appearance of Water in Oil

In dissolved water, oil appears bright and clear and the water can only be removed by vacuum dehydration. In emulsified water, very small droplets are dispersed in the oil and the viscosity may go up, making it appear cloudy and milky. Tiny amounts of detergent engine oil can contaminate industrial oils as well.

Types of Water Contamination

Dissolved Water

Dissolved water is the state at which individual water molecules (not visible to the naked eye) are dispersed throughout a fluid. Dissolved water accrues below the fluid's saturation point. Fluid with only dissolved water in it will have a bright, clear appearance.

Emulsified Water

Once the dissolved water's concentration has exceeded the saturation point of the fluid, microscopic water droplets will start to form an emulsion which is suspended within the fluid. Fluid samples containing emulsified water will have a cloudy, hazy appearance.

Free Water

Free water is formed once the emulsified water has reached a concentration at which it starts a separation phase and large water droplets begin to fall out of solution. Fluid samples containing free water will have a cloudy, hazy appearance. As the sample settles, the free water will fall out to form a separated layer on the bottom of the sample.

Upgrading from Cellulose to Glass

Figure 1: Filter Efficiency Equation

$\beta x_{[c]} = \frac{\text{quantity particles} \ge X \mu_{[c]} \text{ upstream of filter}}{\text{quantity particles} \ge X \mu_{[c]} \text{ downstream of filter}}$

Understanding Media Efficiencies

When a filter element is rated at a particular micron size, it is said to remove particles of that particular size and larger from the fluids it is filtering. However, filter elements of different media with the same micron rating can have substantially different filtration efficiency. Filter efficiency is calculated by taking the ratio of particles upstream of (before) the filter to particles downstream of (after) the filter. The higher the ratio, the more efficient the filter and the less particles it allows to pass. There are two distinct ratings of filter efficiency, classified as nominal and absolute.

Nominal Efficiency

Nominal ratings refer to a degree of filtration at a particular micron by weight of solid particles. Filters rated as nominal (we're looking at you cellulose) have no maximum pore size, meaning while they may remove some 10 micron particles, they can still allow larger particles such as 200 micron to pass through and devastate components in the system.

Absolute Efficiency

Absolute ratings, which most glass media filter elements are classified under, derive their value from the largest size particle which can pass through the pores of the media. Along with much greater efficiencies glass elements have superior fluid compatibility versus cellulose with hydraulic fluids, synthetics, solvents, and high-water based fluids.

Upgrading from Cellulose to Glass

Figure 2: Cellulose Filter Media

Cellulose fibers at 400x magnification

Figure 3: Glass Filter Media

Cellulose vs. Glass Elements

Organic cellulose fibers can be unpredictable in size and effective useful life, while inorganic glass fibers are much more uniform in diameter and much smaller than cellulose fibers as seen in the images to the right (Figures 2 and 3).

The illustrated elements on the following pages provide a visual representation of the efficiencies of both a cellulose and glass element at their respective efficiency ratings.

The cellulose element would typically achieve a code no better than 22/20/17. Runaway contamination levels at $4\mu_{\rm fcl}$ and $6\mu_{\rm fcl}$ are very common when cellulose media is applied in which a high population of fine particles exponentially generate more particles in a chain reaction of internally generated contaminants. The illustrated glass element would typically deliver an ISO Fluid Cleanliness Code of 18/15/8 to 15/13/9 or better depending upon the system conditions and ingression rate.

Upgrading from Cellulose to Glass

Upgrading to Hy-Pro G8 Dualglass

When upgrading to an absolute efficiency glass media element, the system cleanliness must be stabilized. During this clean-up period, the glass element halts the runaway contamination as the ISO cleanliness codes are brought into the target cleanliness range. As the glass element removes years of accumulated fine particles, the element life might be temporarily short.

Once the system is clean the glass element can last up to 4-5 times longer than the cellulose element that was upgraded as shown in Figure 4.

Figure 4: Element Lifespan

Cellulose: $\beta 10\mu_{rc1} = 2$

Dirt in

50,000 particles $10\mu_{rcl}$ or larger

50,000 Particles In 25,000 Particles Out

Dirt out 25,000 particles 10µ_{rcl} or larger

50% efficiency

Glass: $\beta 10\mu_{rc1} = 4000$

Dirt in

50,000 particles $10\mu_{fc1}$ or larger

50,000 Particles In 50 Particles Out

Dirt out 50 particles 10µ_{rcl} or larger

99.9% efficiency

Contamination Calculator Mobile App

Available on the App Store and on Google Play[™]

Calculate the amount of contamination that passes through your hydraulic components and bearings annually with the Hy-Pro Filtration Contamination Tool.

Just enter current and target ISO Fluid Cleanliness Codes, flow rate and daily operating hours to understand the impact of dirty vs. clean oil. Raise awareness, improve reliability, and save money by minimizing component repair and replacement costs while extending useful fluid life. Put Hy-Pro on your lube team and let us help you set a target and implement strategies to achieve and maintain your fluid cleanliness goals.

Viscosity Reference Chart

Viscosity Scale Chart

The chart below provides a quick reference for converting between the four major measures of viscosity. To determine equivalents, draw a horizontal line straight across the page at your known viscosity. All other columns that intersect the line represent equivalents.

40

ISO/Temperature Reference

The table below gives viscosity values in cSt for known ISO VG fluids at specified temperatures using the Kinematic midpoint of each classification according to ISO 3448. Values given below are an approximation subject to variation $\pm 10\%$ from the midpoint value used in the calculations and are intended to be used as a reference. For exact value ranges, contact your fluid manufacturer.

To determine viscosity, locate your fluid ISO VG across the top, locate your target/specified temperature in the two left hand columns, and the cell in which the respective column and row intersect is the approximate viscosity value.

Temp °F	Temp ℃	ISO 22	ISO 32	ISO 46	ISO 68	ISO 100	ISO 150	ISO 220	ISO 320	ISO 460	ISO 680	ISO 1000	ISO 1500
14	-10	315	610	1,130	2,285	4,493	9,277	18,565	36,300	69,775	141,088	283,473	593,291
23	-5	218	405	724	1,401	2,646	5,225	10,013	18,790	34,687	67,151	129,188	258,112
32	0	155	278	481	893	1,625	3,081	5,672	10,249	18,228	33,901	62,665	119,962
41	5	113	196	330	590	1,037	1,893	3,359	5,861	10,072	18,052	32,160	59,188
50	10	85	142	233	402	685	1,207	2,071	3,498	5,825	10,088	17,371	30,828
59	15	65	106	168	282	467	797	1,324	2,171	3,510	5,890	9,828	16,865
68	20	51	80	125	203	327	542	875	1,396	2,196	3,579	5,800	9,648
77	25	40	62	95	150	235	379	596	927	1,422	2,255	3,557	5,748
86	30	32	49	73	113	173	272	417	633	950	1,468	2,259	3,554
95	35	27	39	58	87	130	200	300	445	652	986	1,481	2,274
104	40	22	32	46	68	100	150	220	320	460	680	1,000	1,500
113	45	19	26	37	54	78	115	165	235	332	481	694	1,018
122	50	16	22	31	44	62	89	126	177	245	348	493	709
131	55	13	19	26	36	50	71	98	135	185	258	358	506
140	60	12	16	22	30	41	57	78	105	142	194	266	369
149	65	10	14	18	25	34	46	62	83	110	149	201	275
158	70	9	12	16	21	28	38	51	67	87	117	155	208
167	75	8	10	14	18	24	32	42	54	70	92	121	161
176	80	7	9	12	16	20	27	35	45	57	74	96	126
185	85	6	8	11	14	18	23	29	37	47	60	77	100
194	90	6	7	9	12	15	120	25	31	39	50	63	81
203	95	5	7	8	11	13	17	21	27	33	42	52	66
212	100	5	6	7	9	12	15	18	23	28	35	43	54
221	105	4	5	7	8	10	13	16	20	24	30	37	45
230	110	4	5	6	8	9	12	14	17	21	25	31	38
239	115	4	5	6	7	8	10	12	15	18	22	27	32
248	120	3	4	5	6	8	9	11	13	16	19	23	28
257	125	3	4	5	6	7	8	10	12	14	17	20	24
266	130	3	4	4	5	6	8	9	11	12	15	18	21
275	135	3	3	4	5	6	7	8	10	11	13	15	18
284	140	3	3	4	4	5	6	7	9	10	12	14	16
293	145	2	3	3	4	5	6	7	8	9	11	12	14
302	150	2	3	3	4	4	5	6	7	8	10	11	13

VISCOSITY (CS)

VISCOSITY (SUS)

VISCOSITY (CS)

VISCOSITY (SUS)

Hy-Pro Interchange

The world's largest selection of critical filter elements.

With over 250,000 filter element crosses, Hy-Pro's Interchange offers the most extensive and comprehensive selection of critical hydraulic and lube oil filter elements anywhere. And it's only growing larger. Each year, we catalog thousands of filter elements in our efforts to provide our customers with the best contamination solutions, service and support possible.

ISO Certification

Want to find out more? Get in touch.

hyprofiltration.com info@hyprofiltration.com +1 317 849 3535 © 2021 Hy-Pro Corporation. All rights reserved.

