Hydraulic & Lube Oil Contamination Reference Chart

Emulsified Water:

Very small droplets

dispersed in oil.

Oil viscosity may

go up and appear

cloudy and milky.

Tiny amounts of detergent engine

industrial oils.

Predictor Source of Spectrometry Metals

Wear Metals Contaminants & Abrasives

Bronze Alloy

Stainless Steel Plating

Cement Dust

Needle Bearings

Bearing Flashing

Turbine Blades

Gas Turbine Bearings Paint

oil can contaminate

Oil Additive: Anti Wear Oil Additive: Ext Pressure

Oil Additive: Antifoam

Synthetic Lubricant

Oil Cooler (Solder)
Wrist Pin Bushings

Oil Additives

Paper Mill Dust

athodic Protection

Grease
Oil Additive: Anti Wear

Paper Dust

hyprofiltration.com/

Filter Element Upgrades Deliver lower ISO Codes, longer element life, and lower total cost of ownership

NSD Non-Spark Discharge Filter Elements

Elements designed to prevent spark discharge

in bearing lube and hydraulic control systems

FSL High Viscosity Filtration Systems

FSAPE Phosphate Ester Conditioning Systems

acid, increase resistivity and lower ISO Codes

Donaldson Hy-ProProduct Catalog

Complete conditioning systems to remove

Oversized filter systems for off-line

gearbox and reservoir conditioning

FC Off-line Filter Carts Heavy duty off-line Filter Carts for reservoir and gearbox conditioning

SVR Soluble Varnish Removal Systems Complete recovery and maintenance solution for mineral oil based turbine oil lubricants

VUD Vacuum Dehydration Systems Complete oil conditioning systems for removal of particulate and all forms of water

FCLCOD Diesel Conditioning Filter Carts Heavy duty water and particulate removal filter carts for diesel fuels

Available on the App Store and on Google Play™

Appearance of Water in Oil

Fluid Analysis Reference Guide

to their chemical symbol (often how they'll be listed on the reports) and

the various sources from which they are known to occur.

Oil Analysis Test Categories

XX Wear Metals XX Additives

Bushings Clutches

Pump Bearings

Thrust Bearings

Fuel Additive Grease Thickener

Fuller's Earth

Hard Water

Sleeve Liners

Oil Coolers

Bearing Cage

Cam Bushings

Bearings Blocks Brake Pads

Cam Shaft

Crankshafts

Low Alloy Steel

Grease Thickene

Ca

Oil Additive: Detergent

Oil Additive: Anti Wear Oil Additive: Detergent

Hard Rock Dust

Oil Additive: Rust

Taper Bearings

Steering Disc

Wear Plates

Pump Piston & Thrust Plate

Valve Train Bushings

Wrist Pin Bushings

Liners Oil Pump PowerTake Off (PTO)

Oil Additive: Detergent

Below are contaminants found on fluid analysis test reports listed according

500 ppm 1000 ppm 2500 ppm 5000 ppm 10000 ppm

Harmful Effects of Water in Oil

Water is one of the most common and most damaging contaminants found in a lube or hydraulic system. Continuous or periodic high water levels can result in damage such as:

- Metal Etching (Corrosion)
- Abrasive Wear in Hydraulic Components
- Dielectric Strength Loss
- Fluid Breakdown
- Additive Precipitation and Oil Oxidation
- Reduction in Lubricating Properties

Contamination Related Failure

Component Life Extension by Removing Water*

	1000 (0.1%)		500 (0.05%)		250 (0.025%)		100 (0.01%)		50 (0.005%)	
	Rolling Element	Journal Bearing	Rolling Element	Journal Bearing	Rolling Element	Journal Bear- ing	Rolling Element	Journal Bear- ing	Rolling Ele- ment	Journal Bearing
5000	2.3	1.6	3.3	1.9	4.8	2.3	7.8	2.9	11.2	3.5
2500	1.6	1.3	2.3	1.6	3.3	1.9	5.4	2.4	7.8	2.9
1000	-	-	1.4	1.2	2	1.5	3.3	1.9	4.8	2.3
500	-	-	-	-	1.4	1.2	2.3	1.6	3.3	1.9
250	-	-	-	-	-	-	1.5	1.3	2.3	1.6
100	-	-	-	-	-	-	-	-	1.4	1.2
									*Courtes	y of Noria

Before

ISO Code Limits

Recommended* Upper Limit ISO Cleanliness Codes per Component by Pressure Rating

	Pressure <2000 psi (138 bar)		Pressure 2000-3000 psi (138-207 bar)		Pressure >3000 psi (207 bar)	
	Industry	Donaldson	Industry	Donaldson	Industry	Donaldson
	Standard	Hy-Pro	Standard	Hy-Pro	Standard	Hy-Pro
		Recommended		Recommended		Recommended
Pumps						
Fixed gear	20/18/15	≤ 17/15/12	19/17/15	≤ 16/14/11	-	-
Fixed piston	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	17/15/12	≤ 15/13/10
Fixed vane	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Variable piston	18/16/13	≤ 16/14/11	17/15/13	≤ 15/13/10	16/14/12	≤ 15/13/10
Variable vane	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10	-	-

/alves						
Cartridge	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10
check valve	20/18/15	≤ 17/15/12	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11
Directional (solenoid)	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
low control	19/17/14	≤ 17/15/12	18/16/13	≤ 16/14/11	18/16/13	≤ 16/14/11
Pressure control	19/17/14	≤ 17/15/12	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10
modulating)						
Proportional	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
artridge valve						
Proportional directional	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional flow control	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
ressure control						
Servo valve	16/14/11	≤ 14/12/9	16/14/11	≤ 14/12/9	15/13/10	≤ 13/11/8
Pooringo						
Bearings						

Bearings							
Ball bearing	15/13/10	≤ 15/13/10	-	-	-	-	
Gearbox (industrial)	17/16/13	≤ 15/13/10	-	-	-	-	
Journal bearing	17/15/12	≤ 15/13/10	-	-	-	-	
(high speed)							
Journal bearing	17/15/12	≤ 15/13/10	-	-	-	-	
(low speed)							
Roller bearing	16/14/11	≤ 15/13/10	-	-	-	-	

Gear motors Radial piston motors

Cylinders

Vane motors

Axial piston motors

Other						
Test stands	15/13/10	≤ 15/13/10	15/13/10	≤ 15/13/10	15/13/10	≤ 15/13/10
Hydrostatic transmissions	17/15/13	≤ 16/14/11	16/14/11	≤ 15/13/10	16/14/11	≤ 15/13/10
High pressure fuel injector	18/16/13	≤ 16/14/11	18/16/13	≤ 15/13/10	18/16/13	≤ 15/13/10

19/17/14 ≤ **16/14/11**

*Depending upon system volume and severity of operating conditions a combination of filters with varying degrees of filtration efficiency might be required (I.e. pressure, return, and off-line filters) to achieve and maintain the desired fluid cleanliness.

Understanding ISO Codes

The ISO Cleanliness Code (per ISO4406-1999) is used to quantify particulate contamination levels per milliliter of fluid at 3 sizes - $4\mu_{\text{ICI}}$, $6\mu_{\text{ICI}}$, and $14\mu_{\text{ICI}}$. It is expressed in 3 numbers (example 19/17/14) where each number represents a contaminant level code for the correlating particle size. The code includes all particles of the specified size and larger.

It is important to note that each time a code increases, the quantity range of particles is doubling. Inversely, as a code decreases by one the contaminant level is cut in half.

ISO Code	Particles per M	illiliter (PPM)		Sample Values	Before Filtr	ation	
	Lower Limit	Upper Limit		Particle Size	PPM	ISO 4406 Code Range	ISO Code
24	80,000	160,000		4 μ _[C]	151773	80,000-160,000	24
23	40,000	80,000	_	4.6µ _[C]	87210		
22	20,000	40,000		6μ _[C]	38363	20,000-40,000	22
21	10,000	20,000		10µ _[C]	8229		
20	5,000	10,000	_	14μ _[C]	3339	2,500-5,000	19
19	2,500	5,000		21µ _[C]	1048		
18	1,300	2,500	_	38µ _[C]	112		
17	640	1,300	_	68µ _[C]	2		
16	320	640	_				
15	160	320		Sample Values	After Filtrat	ion	
14	80	160	_	Particle Size	PPM	ISO 4406 Code Range	ISO Code
13	40	80		4 μ _[C]	69	40-80	13
12	20	40		4.6µ _[C]	35		
11	10	20	_	6μ _[c]	7	5-10	10
10	5	10		10 μ _[C]	5		
9	2.5	5	_	14µ _[C]	0.4	0.32-0.64	6
8	1.3	2.5	_	21µ _[C]	0.1		
7	0.64	1.3	_	38µ _[C]	0.0		
6	0.32	0.64		68µ _[C]	0.0		

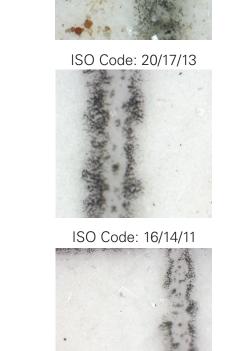
Component Life Extension Tables

Develop a Fluid Cleanliness Target

Donaldson Hy-Pro will help you develop a plan to achieve and maintain target fluid cleanliness. Arm yourself with the support, training, tools and practices to operate more efficiently, maximize uptime and save money.

Laboratory and field tests prove time and again that Donaldson Hy-Pro filters consistently deliver lower ISO fluid cleanliness codes.

Improving fluid cleanliness means reduced downtime, more reliable equipment, longer fluid life, fewer maintenance hours, and reduces costly component replacement or repair expenses.


DFE Rated Filter Elements Lower ISO Codes and Improve Reliability

Current	New	New	New	New
ISO Code				
	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/23/21	25/22/19	23/21/18	22/20/17
27/25/22	25/23/19	23/21/18	22/20/17	21/19/16
26/24/21	23/21/18	22/20/17	21/19/16	21/19/15
25/23/20	22/20/17	21/19/16	20/18/15	19/17/14
24/22/19	21/19/16	20/18/15	19/17/14	18/16/13
23/21/18	20/18/15	19/17/14	18/16/13	17/15/12
22/20/17	19/17/14	18/16/13	17/15/12	16/14/11
21/19/16	18/16/13	17/15/12	16/14/11	15/13/10
20/18/15	17/15/12	16/14/11	15/13/10	14/12/9
19/17/14	16/14/11	15/13/10	14/12/9	13/11/8
18/16/13	15/13/10	14/12/9	13/11/8	_
17/15/12	14/12/9	13/11/8	_	_
16/14/11	13/11/8	_	_	_
15/13/10	13/11/8	_	_	_
14/12/9	13/11/8	_	_	_

Oil Analysis Patch Test Kits

Lowering Your ISO Codes: Oil Analyses Filter Patches Understanding the condition of your fluid is the first step toward improving your system cleanliness. Establish your current ISO code, set a target

Hydraulic Component Life Extension

Current	New	New	New	New
ISO Code				
	2 x Life	3 x Life	4 x Life	5 x Life
28/26/23	25/23/21	25/22/19	23/21/18	22/20/17
27/25/22	25/23/19	23/21/18	22/20/17	21/19/16
26/24/21	23/21/18	22/20/17	21/19/16	21/19/15
25/23/20	22/20/17	21/19/16	20/18/15	19/17/14
24/22/19	21/19/16	20/18/15	19/17/14	18/16/13
23/21/18	20/18/15	19/17/14	18/16/13	17/15/12
22/20/17	19/17/14	18/16/13	17/15/12	16/14/11
21/19/16	18/16/13	17/15/12	16/14/11	15/13/10
20/18/15	17/15/12	16/14/11	15/13/10	14/12/9
19/17/14	16/14/11	15/13/10	14/12/9	13/11/8
18/16/13	15/13/10	14/12/9	13/11/8	-
17/15/12	14/12/9	13/11/8	_	-
16/14/11	13/11/8	_	_	-
15/13/10	13/11/8	_	_	-
14/12/9	13/11/8	_	_	_

Roller Contact Bearing Life Extension

Current	New	New	New	New	
ISO Code					
	2 x Life	3 x Life	4 x Life	5 x Life	
28/26/23	25/23/19	22/20/17	20/18/15	19/17/14	
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13	
26/24/21	22/20/17	20/18/15	18/16/13	17/15/12	
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11	
24/22/19	20/18/15	18/16/13	16/14/11	15/13/10	
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9	
22/20/17	18/16/13	16/14/11	14/12/9	13/11/8	
21/19/16	17/15/12	15/13/10	13/11/8	-	
20/18/15	16/14/11	14/12/9	_	_	
19/17/14	15/13/10	13/11/8	_	-	
18/16/13	14/12/9	-	_	_	
17/15/12	13/11/8	-	-	_	
16/14/11	13/11/8	-	_	_	
15/13/10	13/11/8	_	_	_	
14/12/9	13/11/8	_			

18/16/13 ≤ **15/13/10**